Towards biologically constrained attractor models of schizophrenia
Heike Stein¹, Joao Barbosa¹, and Albert Compte²

Abstract
Alterations in neuromodulation or synaptic transmission in biophysical attractor network models, as proposed by the dominant dopaminergic and glutamatergic theories of schizophrenia, successfully mimic working memory (WM) deficits in people with schizophrenia (PSZ). Yet, multiple, often opposing alterations in memory circuits can lead to the same behavioral patterns in these network models. Here, we critically revise the computational and experimental literature that links NMDAR hypofunction to WM precision loss in PSZ. We show in network simulations that currently available experimental evidence cannot set apart competing biophysical accounts. Critical points to resolve are the effects of increases vs. decreases in E/I ratio (e.g. through NMDAR blockade) on firing rate tuning and shared noise modulations and possible concomitant deficits in short-term plasticity. We argue that these concerted experimental and computational efforts will lead to a better understanding of the neurobiology underlying cognitive deficits in PSZ.

Addresses
¹ Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Études Cognitives, École Normale Supérieure, INSERM U960, PSL University, Paris, France
² Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

Corresponding author: Compte, Albert (acompte@clinic.cat)

A These authors contributed equally to this work.

Current Opinion in Neurobiology 2021, 70:171–181
Edited by Julijana Gjorgjieva and Ila Fiete
This review comes from a themed issue on Computational Neuroscience
For a complete overview see the Issue and the Editorial
https://doi.org/10.1016/j.conb.2021.10.013
0959-4388/© 2021 Elsevier Ltd. All rights reserved.

Abbreviations
WM, working memory; PSZ, people with schizophrenia; NMDA, N-methyl-D-aspartic acid; NMDAR, NMDA receptor; STP, short-term plasticity.

As part of the new field of computational psychiatry, computational models have been increasingly used to link molecular and cellular mechanisms with systemic and behavioral alterations in psychiatric diseases [1–3]. Dynamical network accounts of brain disease reach from models of distributed processing across brain areas to biophysical models of the local cortical circuitry [4,5]. Computational models contribute quantitative perspectives and mechanistic hypotheses about pathological brain functions that have a transformative potential on psychiatric research [6]. However, advancing towards valid model-based links between mechanisms and symptoms will require a concerted effort of theoretical and neurophysiological research to select among currently underconstrained computational models. We illustrate this point here by focusing on circuit models of association cortices that reproduce working memory (WM) alterations in people with schizophrenia (PSZ) (Figure 1a and Box 1; for a comprehensive review on computational models of schizophrenia, see Refs. [1–3,7]). These specific models have attracted attention for combining rich quantitative descriptions of multiple behavioral deficits in PSZ with detailed, biologically plausible mechanisms (Box 1), informed by neurophysiological data from behaving animals [8–11] and in vitro experiments [12,13]. Briefly, WM in these circuit models is held in patterns of sustained, stimulus-specific network activity. While discrete WM tasks (e.g. two-alternative_forced_choice tasks) are typically modeled through interconnected stimulus-selective subpopulations, continuous tasks (e.g. the oculomotor delayed response task) are encoded by a continuous, ring-shaped network of tuned neurons that produce localized bumps of sustained neural activity during the mnemonic period.

Attractor stability as a general framework in computational psychiatry
On the basis of these computational models, it has been argued that psychiatric symptoms, and especially those occurring in PSZ, may be more naturally mapped to distortions of network dynamics rather than directly to specific cellular or molecular mechanisms [9,15,16]. In the context of WM, behaviorally relevant changes in network dynamics are chiefly linked to the stability of mnemonic attractor states, i.e. stable patterns of sustained network activity that represent memoranda. In this framework, different altered neurobiological mechanisms convergently affect the stability of attractor states (Figure 1b) and determine changes in network
output consistent with disease symptoms (e.g. weaker memories or higher distractibility, Box 1). Dynamical systems models of WM alterations in PSZ have proposed that the flattening of the attractor landscape would lead to less stable memories, lower WM capacity, and increased distractibility [15,17–19]. Detailed biophysical models have shown how this change in network dynamics, consistent with the symptoms of PSZ, can be attained through different mechanistic alterations: from synaptic receptor modulations that alter the excitation-to-inhibition ratio (E/I ratio) of the network [20], over complex neuromodulatory actions of the dopamine system on synaptic and cellular channels [21], to the effect of serotonergic receptors on the excitability of network neurons [22] (Box 1 for more references). In turn, a given alteration of network dynamics may be mitigated by ‘treatment’ manipulations unrelated to the initial mechanistic deficit.

The specific mapping of a given mechanistic alteration (e.g. depleting NMDA receptors (NMDARs)) and the resulting network dynamics effect (e.g. weaker attractor states) may in some cases be difficult to establish. In great part, this is due to our currently limited knowledge about the neurophysiology of the implicated cortical circuits and the still insufficient understanding of biological network models. We illustrate this point in the following by focusing on the lower precision of spatial WM reports in PSZ (Box 1) and how this may be explained by a reduction in glutamatergic NMDAR efficacy or in short-term plasticity (STP), which, in turn, lead to reduced stability of attractors in the face of random fluctuations. Current computational models establish an ambiguous correspondence between this behavioral phenomenon and NMDAR-mediated changes in E/I ratio: depending on the modeler’s choice among biologically plausible yet distinct model architectures, either increases or decreases in cortical E/I ratio could reduce attractor stability. We suggest that further neurophysiological data is needed to clarify this ambiguity.

E/I ratio has ambiguous effects on WM stability, depending on network biophysics

Experimental evidence for an increased vs. decreased E/I ratio in PSZ is ambiguous: while most evidence points to an increased cortical E/I ratio in PSZ [23–25], possibly caused by hypofunctional NMDARs in inhibitory interneurons (i.e. cortical disinhibition) [12,26–28], other studies have questioned the predominance of inhibitory dysfunction [29] or provided evidence for reduced synaptic spine densities in prefrontal pyramidal cells of PSZ [30,31], suggesting deficits in recurrent excitatory circuitry in PFC. In support of the former hypothesis, computational models that implement cortical disinhibition in WM circuits can explain reduced WM precision and increased distractibility [20,32,33] (but note similar modeling work that instead explains altered decision-making biases under ketamine with a deficit in cortical excitation, rather than a deficit in inhibition [34]). In Refs. [20,32,33], the behavioral effect of disinhibition
Box 1. Quantitative WM deficits associated with schizophrenia.

Precision. PSZ exhibits loss of WM precision [32,87–89], especially for long memory delays [88]. In computational models, this effect can be accounted for by an increased E/I ratio due to NMDAR hypofunction at interneurons [80,92,88], decreased E/I ratio due to NMDAR hypofunction at pyramidal neurons (Figure 2), dopaminergic imbalances [93], or the disruption of STP [33,74].

Distractibility. Memory reports of PSZ, relative to healthy controls, are substantially more biased toward distractors [32,89]. This effect has been simulated in network models with increased E/I ratio [32], decreased D1/D2 ratio [21,91,92], and disrupted STP [74]. In addition to enhanced biases toward distractors, PSZ also exhibit occasional substantial repulsion from nearby distractors [32,88]. This effect cannot be accounted for by attractor models of WM [88], but it is still unclear if it is a delay-dependent effect or it reflects alterations in perceptual processing. Indeed, experimental protocols that separate perceptual and WM origins (by including a 0-delay condition, for instance) when measuring distractibility [93] and serial dependence [33,94–96] in healthy controls have suggested a perceptual origin of similar repulsive biases.

Capacity. Reduced WM capacity characterizes PSZ [97–100]. Computational models show that WM capacity may be determined by multiple factors: interference between memories [93,101–103], memory forgetting [102–104], feature-binding errors or swap errors [105], and the spontaneous generation of false memories [22]. Some of these factors have been reported to be affected in PSZ, like increased incidence of false memories [106], but more studies are needed to better specify the origin of reduced WM capacity in PSZ. In line with all these different factors, also multiple biological mechanisms may underlie WM capacity deficits in PSZ: reduced E/I ratio [37,102,104], dopaminergic imbalances [90], reduced efficacy of top-down inputs [104], functional cortico-cortical disconnection [103], impaired oscillatory dynamics [107,108]. More sophisticated experiments and appropriate data analyses will be key in disentangling the different origins and mechanisms of reduced WM capacity in PSZ.

Serial dependence or proactive interference. Tasks engaging WM induce across-trial interference in what is commonly called serial dependence [109]. In contrast with the biases previously described in this box, serial dependence is reduced in PSZ [33]—intriguingly, this reduction also characterizes autism [110]. Attractor models with STP have been proposed for serial dependence [75,76], and it has been shown that, in these models, alterations in STP, but not in the E/I ratio of the attractor models, can account for reduced serial dependence in PSZ [33].

occurs through stronger bumps of activity (bump attractors), i.e. higher network activation and deeper attractors. The finding that deeper attractors are more sensitive to noisy fluctuations, causing a reduction in WM precision, is in contradiction with an intuitive understanding of dynamics in mnemonic attractor landscapes, i.e. that deeper attractors should be associated with more stable memories. This apparent paradox is resolved by noting that in continuous attractor models, random displacements of a bump attractor occur along the dimension of marginal stability (pink manifold in Figure 1B), rather than through jumps from one attractor basin to the other, as observed in discrete attractor models that are commonly used to model alternative-choice WM tasks [15]. Therefore, random bump-attractor displacements underlying WM imprecision are not exclusively linked to the depth or shape of the attractor but also depend rather intricately on the amplitude and correlations of noise in the network (see below). The fact that we do not know how NMDAR blockade affects these elements both in the brain and in biologically realistic computational models is at the heart of our current inability to unambiguously evaluate the plausibility of the glutamatergic explanation for a drop in WM precision in PSZ, as we show in the following.

Mathematical analyses of neural field models show that stronger bumps (wider and/or taller) diffuse more slowly, but this can be offset by an increase in noise amplitude or spatial correlation in the network [35,36]. The diffusivity (D) of the bump attractor is proportional to the noise strength (ε) and the spatial modulation of noise correlations (ΔC) in input currents and depends inversely on the squared amplitude (A^2) of the bump [36,37]:

$$D \sim \varepsilon \cdot \Delta C / A^2$$ \hspace{1cm} (1)

As a result, the specific effect of reduced NMDAR efficacy, or any other manipulation of a given biophysical parameter, on WM diffusion will depend on how the manipulation affects each of these three factors quantitatively. These effects, in turn, are determined by biophysical details of the models, including the origin of correlated noisy fluctuations during the delay period. Only recently have some studies started to address the generation of correlated variability in spatially extended balanced networks [38–40], but more work is needed to fully understand how it changes with specific manipulations of biological parameters.

Specific bump attractor network implementations illustrate the indecisiveness of current modeling accounts of WM precision in PSZ. We simulated two distinct biophysical bump attractor models, which differ fundamentally in the way that noise is generated in the network (github.com/comptelab/attractorSZ for implementation details). In Model 1, noise is injected from external sources, and all-to-all coupling between neurons generates strong noise correlations [33]. We implemented two versions of Model 1: one that has
been prominently used to simulate the effects of NMDAR dysfunction on WM in PSZ [20,32] and a second version that includes an additional STP mechanism at recurrent excitatory synapses [33]. Model 2 also includes STP, but its noise is generated internally by virtue of sparse network connectivity that induces very weak correlations between the noise experienced by different neurons [41]. In Model 1, manipulations of NMDAR efficacy affected bump shape but did not change bump amplitude or mean neural variability strongly (Figure 2a and b, middle, top) but in turn had an important effect on the spatial modulation of spike-count noise correlations (Figure 2c, middle, top). In contrast, manipulations of NMDARs in Model 2 had a strong impact on bump amplitude (Figure 2a, bottom) and a more modest influence on noise amplitude (Figure 2b, bottom) and the spatial modulation of noise correlations (Figure 2c, bottom). Repeated simulations show that corresponding perturbations in NMDARs (either on excitatory cells or on inhibitory cells) in these two biophysical models led to opposing predictions for bump diffusion. Disinhibition (E→I) led to faster diffusion in Model 1 (Figure 2d, middle, top, similar to previous models in Refs. [20,32]) but resulted in slower diffusion in Model 2 (Figure 2d, bottom). Importantly, we could predict qualitative differences in diffusivity as dictated by Eq. (1) [36] (Figure 2d, dotted lines) from bump amplitude, mean neural variability, and noise correlation estimations from simulated data (Figure 2a-e). To be noted here is that these estimations were calculated from neuronal spiking activity rather than input currents as used in the mathematical derivation of Eq. (1) [36,37]. This facilitates the comparison of these results with experimental data. The results of our simulations indicate that the direction in which alterations of the E/I ratio through NMDAR hypofunction affect WM precision will depend on the biophysical details of the WM-maintaining circuit and on how these mechanisms affect bump shape, neural variability, and the spatial modulation of noise correlations. Which biological parameters determine how the bump shape and noise characteristics respond to perturbations is currently unclear, but candidate factors that distinguish the two models include sparseness of connectivity, strength of external noisy inputs, saturation of NMDARs, conductance-based synapses, and oscillatory activity.

Insufficient and inconsistent experimental constraints on biologically plausible computational models

A detailed understanding of how a diversity of biologically plausible network models (including the models highlighted above) react to mechanistic manipulations can be exploited to identify the regime in which cortical circuits operate and motivate neurophysiological and pharmacological experiments in behaving animals. Current evidence from combined pharmacology and electrophysiology underscores the insufficiency of assuming a straightforward relation between E/I ratio and WM precision: A recent study that raised the E/I ratio in monkeys through cholinergic neuromodulation by microstimulation of nucleus basalis shows that WM precision increases and tuning curves in the prefrontal cortex (PFC) become wider [42], in agreement with the impact of bump attractor shape on WM diffusivity according to Eq. (1). However, a recent study under ketamine showed a similar reduction in delay-period tuning in PFC, but this time associated with decreased precision [43], which suggests that manipulation of NMDARs may have an important impact on noise parameters [44,45] that compensate for the influence of bump shape on diffusivity (as for Model 1 in Figure 2). The opposing effects of E/I ratio on WM performance in Refs. [42,43] suggest that the convenient interpretation of functional alterations as the effect of modulations in E/I ratio via distinct convergent mechanistic manipulations may be an inadequate simplification of the mechanistic basis of cognitive deficits of PSZ. Future experiments with neuromodulators or receptor antagonists should explicitly assess the impact on bump shape and correlated noise during delay activity, together with WM precision, in order to clarify the validity of the E/I ratio as a useful construct for the interpretation of these data.

A useful approach for understanding the effects of NMDAR hypofunction in PSZ is the pharmacological administration of NMDAR antagonists [46]. Mimicking effects in PSZ, NMDAR antagonists cause reduced accuracy in WM tasks [10,25,43,47], possibly reflecting a drop in WM precision. Despite the dominant view that systemic ketamine generally raises the E/I ratio and disinhibits cortical networks [11,26,27,48,49], more specific evidence indicates that in the context of WM tasks, prefrontal delay activity is often suppressed in PSZ [50,51] and under systemic NMDAR blockade [10,43,47,52,53] (but see Ref. [44]). Yet, it has to be noted that some of the most compelling evidence for NMDAR-blockade-related suppression of delay activity in PFC comes from iontophoresis studies. Importantly, iontophoresis only affects receptors in the very near neighborhood of the electrode tip [10,54], so that its suppressive effects cannot be unequivocally associated with the network effects of systemic administration, as illustrated in simulations in Figure 3. Indeed, when NMDAR antagonism is more effective on interneuron receptors than on pyramidal neuron receptors, iontophoresis vs. systemic administration simulations yield paradoxical results: iontophoresis suppresses (Figure 3c and d), whereas whole-network application enhances delay activity (Figure 3b). Electrophysiology studies in monkeys performing a WM task under systemic NMDAR antagonists have mostly found decreased [10,43,52] but
also increased [44] prefrontal mnemonic activity. Such experiments are critical in clarifying the impact of systemic NMDAR antagonists on WM representations and properly constrain computational models (Figure 2).

Another factor that complicates the understanding of the effects of NMDAR hypofunction in PSZ on WM is the distributed nature of WM activity across the cortex. Based on currently available evidence, NMDAR antagonists would suppress prefrontal WM-related activity [10,43,47,52,53]. Recent evidence, however, also shows that WM deficits of PSZ may depend particularly on activity in parietal circuits [55]. Interestingly, NMDAR antagonists affect mnemonic activity in prefrontal and parietal circuits inversely [52], suggesting a possible enhancement of parietal WM-related activity. This contrast in the reaction of these two circuits to NMDAR manipulation is supported by marked differences in cellular physiological properties [56], which could impose different correlated noise structures (Figure 2). Which of the two areas is more directly linked to WM behavioral output? There is evidence that prefrontal
mnemonic activity reflects the memory diffusion that causes WM imprecisions [57,58], suggesting a closer link of this area to WM precision. However, it is not known if this relationship also exists for activity fluctuations in the parietal cortex and which of the two areas is more closely associated with the activity drifts that drive WM imprecisions. As a result, specifying the dominant role of prefrontal or parietal circuits in maintaining accurate spatial WM signals through the mnemonic delay appears here as another key piece of information to constrain currently indecisive computational models (Figure 2).

Beyond E/I ratio: plasticity deficits in schizophrenia and their effects on WM

On the basis of insufficiently constrained computational models, it is currently unclear how regional imbalances in cortical E/I ratio caused by hypofunctional NMDARs can explain WM precision deficits in PSZ. However, mechanisms beyond a shift in cortical E/I ratio could be affected by biological alterations in PSZ, some of which might be mapped on WM deficits more unequivocally than the concept of cortical E/I ratio. Here, we consider a synaptic plasticity mechanism that explains reductions in WM precision in both attractor models considered in Figure 2. Schizophrenia has been related to dysfunctions in synaptic plasticity [59–62], and perceptual and neurocognitive alterations in the disease have been attributed to alterations in long- and short-term plasticity (STP) [63–65], also in relation to NMDAR hypofunction [66,67]. Cognitive effects of disrupted STP on WM have been assessed in genetic mouse models [68,69] and computational models of schizophrenia [70], where reductions in STP lead to reduced WM performance [68,69]. Moreover, pharmacological inhibition of NMDARs through systemic ketamine administration decreases spike-time synchrony in delay-active cells in PFC during WM [71], which could be interpreted in light of reduced prefrontal STP [72]. Finally, computational modeling links a novel behavioral pattern of reduced serial dependence in PSZ and anti-NMDAR encephalitis to dysfunctional STP, while prefrontal E/I ratio alone cannot account for these behavioral findings [33].

The predictions for the effect of STP on WM are clear: when implemented in bump attractor networks, STP stabilizes bump attractors against noise so that memory...
Constraining attractor models of schizophrenia

Stein et al.

Conclusions

In this review, we argue that although contemporary network models of schizophrenia capture WM deficits observed in PSZ, the space of possible modeling solutions is not sufficiently constrained by experimental data. By focusing on the effect of increased vs. decreased E/I ratio (E→I↓ vs. E→E↓) on WM precision, we provide two general insights. First, these opposed manipulations can produce the same behavioral pattern in different alternative, plausible biological network models (Figure 2). As a result, the interpretations of mechanism models in computational psychiatry will remain limited in the absence of properly constraining experimental data. Importantly, in-depth analysis of computational models can guide the design of critically informative experiments. Second, we argue that grouping different perturbations under the convenient umbrella of the E/I ratio can be inadequate in some conditions, as different pharmacological perturbations can affect the E/I ratio similarly but have opposite effects on behavior [42, 43].

In the specific case of how manipulations of the E/I ratio affect WM precision, we point out four important neurophysiological unknowns: The shape of activity bumps during WM delays, the specific properties of correlated noise in the circuit, the specific brain area responsible for maintaining accurate WM representations, and the possible joint alteration of NMDARs and STP. First, it appears critical to determine the fine-grained effects of pharmacological interventions on neural tuning. Measuring tuning properties together with behavioral effects will be necessary to inform model selection. Second, spatial profiles of noise correlations may be critical for understanding the effect of disease mechanisms on WM precision, and potentially other WM phenomena not tested in this paper. Third, these neurophysiological characterizations should be done in the circuits most directly associated with maintaining precise WM, as current evidence comparing prefrontal and parietal cortices shows that they respond very differently to NMDAR antagonists. Pharmacological experiments in vivo will be key to inform computational models of schizophrenia by systematically measuring these fine-grained neurophysiological effects directly in the area responsible for WM maintenance. Finally, in vitro experiments should determine if NMDAR antagonists also impact slower mechanisms (e.g., different types of STP [78]) in WM-related cortical networks, as computational models unequivocally assign a memory-stabilizing role to such slower mechanisms, and this could interact with interpretations of WM precision deficits in PSZ (Figure 4).

In network models, reductions of STP cause WM precision loss, also with concurrent E/I ratio alterations that would increase WM precision on their own. Simulations correspond to network Model 2 of Figure 2. Control and E→I↓ conditions are shared with Figure 2, and are compared here with simulations with additional reduction in STP (STP↓ and E→I↓ + STP↓, respectively). (a) Average delay-period activity of neurons in the network in each condition. Notice that STP reduction causes minimal changes in delay rates in the simulations, indicating quite intact E/I ratio in the delay period after STP reduction. (b) Memory diffusion patterns for each condition (see Figure 2d). Notice the strong impact of STP reduction on memory diffusion, to the point that it turns reduced diffusion of E→I↓ into enhanced diffusion (E→I↓ + STP↓) compared to control diffusion (gray).
There is also pending work on the computational and theoretical front. Shared correlations, in addition to the commonly considered bump attractor shape [20], impact WM precision [36], and only recently have studies started to address how these shared correlations are generated in recurrently coupled networks [39,40]. Theoretical efforts should continue and also extend to bump attractors, eventually aiming to understand the role of biophysical mechanisms that have been implicated in schizophrenia, such as NMDARs, dopamine, or STP. Importantly, insights gained about how biophysical manipulations impact bump tuning and noise properties in WM are expected to generalize to other behavioral contexts governed by continuous attractor dynamics, such as tactile WM [79] or the thalamic head direction system in the absence of input [14]. Furthermore, PSZ show abnormal behavioral patterns in other cognitive tasks that require context-dependent cognitive control and have been linked to altered E/I ratio [80—82]. Developing biophysical computational models would allow the mechanistic understanding of these deficits through the consistent integration of computational and neurophysiology data, as attempted here for spatial WM precision. Recurrent neural networks (RNNs) trained with backpropagation are a possible tool to address more complex tasks that are difficult to model in a bottom-up fashion [83]. Training RNNs to replicate behavioral patterns and neural dynamics in PSZ, or pharmacological models of schizophrenia, could untie different contributions of structured connectivity (Ehrlich et al. abstract 1-052, Computational and Systems Neuroscience (Cosyne) Conference, February 2021) [84,85] and STP [86], which appear as the key ingredients to understand WM deficits, and perhaps cognition more broadly, in PSZ.

Finally, we want to acknowledge the contribution of computational models of disease to the understanding of neuropsychiatric disorders. While pointing out inadequacies of current models to provide a consistent account of cognitive deficits in PSZ, we also showed how the analysis of these models allows a more precise framing of the research questions to advance conceptually toward a mechanistic understanding of these diseases. This underscores the rigor that mathematical modeling adds to the field of psychiatry, and we hope that it encourages clinical researchers to adopt these models as a formal framework to understand the disease.

Conflict of interest statement
Nothing declared.

Acknowledgments
We acknowledge support from Institute Carlos III, Spain (Refs: PIE 16/00014, AC20/00071), CELLEX Foundation, Safra Foundation, CERCA Programme/Generalitat de Catalunya, Generalitat de Catalunya (AGAUR 2014SGR1265, 2017SGR01565), ’la Caixa’ Foundation (ID 100010434, under the agreement LCF/PR/HR17/52150001), and by the Spanish Ministry of Science, Competitiveness and Universities co-funded by the European Regional Development Fund (Refs: BU2015-65318-R, RTI2018-094190-B-I00). We thank the Barcelona Supercomputing Center (BSC) for providing computing resources. We thank Jaime de la Rocha, Zachary Kilpatrick, Alexander Seeholzer, Alexandre Mahrach, and Peter Murphy for feedback and discussions.

References
Papers of particular interest, published within the period of review, have been highlighted as:* of special interest
** of outstanding interest

30. Glantz LA, Lewis DA: Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. *Arch Gen Psychiatry* 2000, 57:65–73.

34. Stein, Barbosa et al. found that delay-dependent serial dependence in working memory is strikingly reduced in people with schizophrenia and anti-NMDAR encephalitis compared to healthy controls. Through biochemical modeling, the authors propose a reduction of short-term plasticity to account for the finding.

52. Kummerfeld E, Ma S, Blackman RK, DeNicola AL, Redish AD, ** Vinogradov S, Crowe DA, Chafee MV: Control center errors in nonhuman primates resembling those in schizophrenia reflect opposing effects of NMDA receptor blockade on causal interactions between cells and circuits in prefrontal and parietal cortices. Biol Psychiath Cogn Neurosci Neuroimag 2020, 5:705–714.

As part of a series of recent papers reporting on elegant and difficult experiments with monkeys performing a complex working memory task (DPX task) under systemic ketamine administration, with simultaneous prefrontal and parietal recordings, Kummerfeld et al. show that NMDAR blockade influences prefrontal and parietal networks in opposing ways during WM. This intriguing result questions hypothesised currently implemented in computational models, which typically assume the general disinhibition of cortical circuits.

Using iontophoresis to compare the effects of NMDAR- and AMPAR-antagonists on delay firing, van Vugt et al. show that inhibition of NMDAR leads to a reduction of tuned persistent activity, while the inhibition of AMPAR leads to a more general reduction in firing rates. Together with earlier work by Amy Amsten, this confirms the strong role of NMDARPs in maintaining tuned persistent activity in working memory and its vulnerability in mental diseases affecting NMDARs.

56. González-Burgos G, Miyamae T, Krimer Y, Gulchyna Y, Pafundo DE, Krimer O, Bazmi H, Arion D, Enwright JF, Fish KN, et al.: Distinct properties of layer 3 pyramidal neurons from prefrontal and posterior parietal cortex. Prefrontal neurons are physiologically more diverse, with a large proportion of bursty neurons. This suggests fundamental differences in how these two areas engage in reverberant network dynamics during working memory maintenance, and in particular, their mechanisms of shared correlations, which may play an important role in understanding WM precision deficits in PSZ.

66. Kantrowitz JT: N-methyl-d-aspartate-type glutamate receptor modulators and related medications for the enhancement of auditory system plasticity in schizophrenia. Schizophr Res 2019, 207:70–79.
Constraining attractor models of schizophrenia Stein et al.

Masse et al. trained recurrent neural networks to find how working memory can be supported by persistent firing or short-term plasticity, depending on the task characteristics. This approach is a promising avenue for computational psychiatry in general and the study of working memory deficits in schizophrenia in particular.

Using a large cohort and an extensive parametric task design, Gold et al. consolidate previous findings of spatial working memory deficits in schizophrenia, namely higher distractibility and memory diffusion, and show their consistency with a computational network model. Similar parametric studies with NMDAR-antagonists to test the glutamatergic basis of these deficits in PSZ (Box 1) are still missing.

110. Lieder I, Adam V, Frenkel O, Jaffe-Dax S, Sahani M, Ahissar M: * Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nat Neurosci 2019, 22:256–264. Lieder, Adam et al. found that serial dependence is reduced in people with autism, but not in dyslexic individuals, while this last group shows a reduced impact of long-term stimulus statistics. This is the first study showing reduced serial dependence in clinical populations. That serial dependence is also reduced in schizophrenia suggests a potential link between the two diseases.